top of page

Ocean Heat Content Change

  Ocean heat content change is closely proportional to the average temperature change in a volume of seawater, and is defined here as the deviation from a reference period. Figure1 shows two time series of ocean heat content for the 0 to 700 m layer of the World Ocean, updated from Ishi et al. (2006) and Levitus et al. (2005a) for 1955 to 2005, and a time series for 0 to 750 m for 1993 to 2005 updated from Willis et al. (2004). Approximately 7.9 million temperature profiles were used in constructing the two longer time series. The three heat content analyses cover different periods but where they overlap in time there is good agreement. The time series shows an overall trend of increasing heat content in the World Ocean with interannual and inter-decadal variations superimposed on this trend. The root mean square difference between the three data sets is 1.5 × 1022 J. These year-to-year differences, which are due to differences in quality control and data used, are small and now approaching the accuracies required to close the Earth’s radiation budget (e.g., Carton et al., 2005). On longer time scales, the two longest time series (using independent criteria for selection, quality control, interpolation and analysis of similar data sets) show good agreement about long-term trends and also on decadal time scales.

Figure1 . Time series of global annual ocean heat content (1022 J) for the 0 to 700 m layer. The black curve is updated from Levitus et al. (2005a), with the shading representing the 90% confidence interval. The red and green curves are updates of the analyses by Ishii et al. (2006) and Willis et al. (2004, over 0 to 750 m) respectively, with the error bars denoting the 90% confidence interval. The black and red curves denote the deviation from the 1961 to 1990 average and the shorter green curve denotes the deviation from the average of the black curve for the period 1993 to 2003.

  For the period 1993 to 2003, the Levitus et al. (2005a) analysis has a linear global ocean trend of 0.42 ± 0.18 W m–2, Willis et al. (2004) has a trend of 0.66 ± 0.18 W m–2 and Ishii et al. (2006) a trend of 0.33 ± 0.18 W m–2. Overall, we assess the trend for this period as 0.5 ± 0.18 W m–2. For the 0 to 700 m layer and the period 1955 to 2003 the heat content change is 10.9 ± 3.1 × 1022 J or 0.14 ± 0.04 W m–2 (data from Levitus et al., 2005a). All of these estimates are per unit area of Earth surface. Despite the fact that there are differences between these three ocean heat content estimates due to the data used, quality control applied, instrumental biases, temporal and spatial averaging and analysis methods, they are consistent with each other giving a high degree of confidence for their use in climate change studies. The global increase in ocean heat content during the period 1993 to 2003 in two ocean models constrained by assimilating altimetric sea level and other observations (Carton et al., 2005; Köhl et al., 2006) is considerably larger than these observational estimates. We assess the heat content change from both of the long time series (0 to 700 m layer and the 1961 to 2003 period) to be 8.11 ± 0.74 × 1022 J, corresponding to an average warming of 0.1°C or 0.14 ± 0.04 W m–2, and conclude that the available heat content estimates from 1961 to 2003 show a significant increasing trend in ocean heat content.

 

  There is a close correlation between the 0 to 700 and 0 to 3,000 m time series of Levitus et al. (2005a). A comparison of the linear trends from these two series indicates that about 69% of the increase in ocean heat content during 1955 to 1998 (the period when estimates from both time series are available) occurred in the upper 700 m of the World Ocean. Based on the linear trend, for the 0 to 3,000 m layer for the period 1961 to 2003 there has been an increase of ocean heat content of approximately 14.2 ± 2.4 × 1022 J, corresponding to a global ocean volume mean temperature increase of 0.037°C during this period. This increase in ocean heat content corresponds to an average heating rate of 0.21 ± 0.04 W m–2 for the Earth’s surface.

 

Sea Temperature Rising

Ocean Heat Content Change

bottom of page